Mapping secondary data gaps for social simulation modelling: A case study of Syrian asylum migration to Europe

Author:

Nurse Sarah,Hinsch Martin,Bijak JakubORCID

Abstract

Simulation models of social processes may require data that are not readily available, have low accuracy, are incomplete or biased. The paper presents a formal process for collating, assessing, selecting, and using secondary data as part of creating, validating, and documenting an agent-based simulation model of a complex social process, in this case, asylum migration to Europe. The process starts by creating an inventory of data sources, and the associated metadata, followed by assessing different aspects of data quality according to pre-defined criteria. As a result, based on the typology of available data, we are able to produce a thematic map of the area under study, and assess the uncertainty of key data sources, at least qualitatively. We illustrate the process by looking at the data on Syrian migration to Europe in 2011–21. In parallel, successive stages of the development of a simulation model allow for identifying key types of information which are needed as input into empirically grounded modelling analysis. Juxtaposing the available evidence and model requirements allows for identifying knowledge gaps that need filling, preferably by collecting additional primary data, or, failing that, by carrying out a sensitivity analysis for the assumptions made. By doing so, we offer a way of formalising the data collection process in the context of model-building endeavours, while allowing the modelling to be predominantly question-driven rather than purely data-driven. The paper concludes with recommendations with respect to data and evidence, both for modellers, as well as model users in practice-oriented applications.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Reference11 articles.

1. From conflict zones to Europe: Syrian and Afghan refugees’ journeys, stories, and strategies.;S Belabbas;Social Inclusion.,2022

2. Towards Bayesian Model-Based Demography. Agency, Complexity and Uncertainty in Migration Studies.;J Bijak,2021

3. Investigating immersion and migration decisions for agent-based modelling: A cautionary tale [version 2; peer review: 2 approved with reservations].;J Bijak;Open Research Europe.,2023

4. Flucht 2.0: Mediennutzung durch Flüchtlinge vor, während und nach der Flucht.;M Emmer,2016

5. Darfur crisis: Death estimates demonstrate severity of crisis, but their accuracy and credibility could be enhanced (Report to congressional requesters GAO-07-24).,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3