Neural mechanisms for spatial cognition across vertebrates

Author:

Vinepinsky Ehud,Segev RonenORCID

Abstract

The ability to navigate the world is a critical cognitive skill that most animals use to find food, shelter, and mates. Understanding the neural basis of navigation requires probing how the brain encodes spatial information through the study of the activity of single neurons and neuronal populations. Classically in vertebrates, studies have centered on the rodent hippocampal formation, which led to the discovery of place, grid, head direction and other cell types. However, since navigation skills are essential to almost all vertebrates, spatial cognition in different species also needs to be explored. In recent years, as a result of advances in technology, new data have emerged on the ways in which space is represented during navigation in the brains of vertebrates other than rodents, including teleost fish, birds, and other mammal species. Here, we review the state of the art on the neural representation of an animal’s position and motion across vertebrates at the level of single neurons. We argue that it is time to pool information across vertebrates to identify the underlying algorithms that lead to successful navigation. Although rodent-based data are important, findings in rodents are unlikely to cover the full spectrum of neural computations supporting navigation strategies in the vertebrate kingdom. Studying other species can shed light on length scales such as in large environments, and different scenarios such as naturalistic environments that are hard to carry out in rodents. In addition, a rodent-centric view may neglect the fact that different species are likely to represent positions in the world in ways that do not exist in mammals. Finally, we provide an outlook for the future which includes prediction about findings in unexplored species, and the opportunities for discoveries and understanding in this field.

Funder

Israel Science Foundation

Human Frontiers Science Foundation

Publisher

F1000 Research Ltd

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3