Research on Forming Quality of GH4169 Superalloy Multi-Step Hollow Turbine Shaft by Three-roll Skew Rolling

Author:

Chen Si-Yuan,Shu Xue-Dao,Xu Yong-Ming,Chen Qian,Xu Hai-Jie,Sun Bao-Shou,Wang Ying,Deng Yi-Min

Abstract

Abstract: This paper innovatively proposes a three-roll skew rolling process for flexible forming of hollow turbine shaft, which solves the problems of long manufacturing process and low material utilization of hollow turbine shaft, the core component of aeroengine. Simufact.Forming 14.0 (SF) numerical simulation software was used to establish the finite element model of two-pass three-roll skew rolling of the GH4169 superalloy turbine shaft. The effects of process parameters on the outer diameter error, roundness error and wall thickness uniformity of the rolled piece were investigated by single factor experiments. A five-factor three-level orthogonal test was designed to explore the optimum process parameters by ' comprehensive scoring method'. The results show that the optimal process parameters are that the first pass roll rotating speed is 40 rad/min, the first pass axial speed is 15 mm/s, the second pass roll rotating speed is 50 rad/min, the second pass axial speed is 25 mm/s, and the billet preheating temperature is 1000ºC. The axial velocity of the second pass has the greatest influence on the test results, while the rotational speed of the second pass has the least influence. Under the optimal parameter combination simulation experiment, the outer diameter error, outer roundness error and wall thickness standard deviation are 0.151 mm, 0.121 mm and 0.034 mm, respectively, which are better than the results in the orthogonal test table. The research results provide a theoretical basis for realizing flexible, economical and high-quality forming of hollow turbine shaft by three-roll skew rolling.

Publisher

Zeal Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3