Computational Robotics: An Alternative Approach for Predicting Terrorist Networks

Author:

Nwanga E.M.,Okafor K.C.,Chukwudebe G.A.,Achumba I.E.

Abstract

Increasing terrorist activities globally have attracted the attention of many researchers, policy makers and security agencies towards counterterrorism. The clandestine nature of terrorist networks have made them difficult for detection. Existing works have failed to explore computational characterization to design an efficient threat-mining surveillance system. In this paper, a computationally-aware surveillance robot that auto-generates threat information, and transmit same to the cloud-analytics engine is developed. The system offers hidden intelligence to security agencies without any form of interception by terrorist elements. A miniaturized surveillance robot with Hidden Markov Model (MSRHMM) for terrorist computational dissection is then derived. Also, the computational framework for MERHMM is discussed while showing the adjacency matrix of terrorist network as a determinant factor for its operation. The model indicates that the terrorist network have a property of symmetric adjacency matrix while the social network have both asymmetric and symmetric adjacency matrix. Similarly, the characteristic determinant of adjacency matrix as an important operator for terrorist network is computed to be -1 while that of a symmetric and an asymmetric in social network is 0 and 1 respectively. In conclusion, it was observed that the unique properties of terrorist networks such as symmetric and idempotent property conferred a special protection for the terrorist network resilience. Computational robotics is shown to have the capability of utilizing the hidden intelligence in attack prediction of terrorist elements. This concept is expected to contribute in national security challenges, defense and military intelligence.

Publisher

Zeal Press

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opposition-Based Learning Equilibrium Optimizer with Application in Mobile Robot Path Planning;International Journal of Robotics and Automation Technology;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3