Data–Driven Wake Steering Control for a Simulated Wind Farm Model

Author:

Simani Silvio,Farsoni Saverio,Castaldi Paolo

Abstract

Abstract: Upstream wind turbines yaw to divert their wakes away from downstream turbines, increasing the power produced. Nevertheless, the majority of wake steering techniques rely on offline lookup tables that translate a set of parameters, including wind speed and direction, to yaw angles for each turbine in a farm. These charts assume that every turbine is working well, however they may not be very accurate if one or more turbines are not producing their rated power due to low wind speed, malfunctions, scheduled maintenance, or emergency maintenance. This study provides an intelligent wake steering technique that, when calculating yaw angles, responds to the actual operating conditions of the turbine. A neural network is trained live to determine yaw angles from operating conditions, including turbine status, using a hybrid model and a learning-based method, i.e. an active control. The proposed control solution does not need to solve optimization problems for each combination of the turbines’ non-optimal working conditions in a farm; instead, the integration of learning strategy in the control design enables the creation of an active control scheme, in contrast to purely model-based approaches that use lookup tables provided by the wind turbine manufacturer or generated offline. The suggested methodology does not necessitate a substantial amount of training samples, unlike purely learning-based approaches like model-free reinforcement learning. In actuality, by taking use of the model during back propagation, the suggested approach learns more from each sample. Based on the flow redirection and induction in the steady state code, results are reported for both normal (nominal) wake steering with all turbines operating as well as defective conditions. It is a free tool for optimizing wind farms that The National Renewable Energy Laboratory (USA) offers. These yaw angles are contrasted and checked with those discovered through the resolution of an optimization issue. Active wake steering is made possible by the suggested solution, which employs a hybrid model and learning-based methodology, through sample efficient training and quick online evaluation. Finally, a hardware-in-the-loop test-bed is taken into consideration for assessing and confirming the performance of the suggested solutions in a more practical setting.

Publisher

Zeal Press

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3