Tissue composition and arrangement in sugar beet genotypes of different tissue strength with regard to damage and pathogen infestation

Author:

Nause Nelia,Meier Tobias,Hoffmann Christa M.

Abstract

Drought stress affects yield formation and quality of sugar beet. The aim of this study was to identify the growing period, in which drought stress has the greatest impact on growth, and furthermore, to analyze the response of different sugar beet genotypes. Causes for a different response should be identified. In pot experiments in the greenhouse, drought stress was simulated by reducing irrigation to 60% of the water holding capacity (WHC) for four weeks at various growth stages followed by re-watering. Growth reduction was greatest when drought stress occurred early in the season: the content of the quality-determining non-sugars was highest, sugar yield and beet diameter were lowest. Responses of the genotypes in sugar yield, but primarily in the accumulation of osmotically active substances differed. Despite re-watering after drought stress the restrictions could not be compensated during growth. The transpiration coefficient of the drought-stressed treatments was only slightly different to the control, because water consumption in the control did not either increase at average air temperatures beyond 23 °C. The strong effect of early drought stress could be attributed to the high growth rates, so that a limited water supply affected yield formation more than at later growth stages. The storage losses of sugar beet genotypes are closely related to damage during harvest and subsequent infestation with mould and rots. Genetic variation for storability seems to be primarily linked to textural properties of the roots such as the resistance against mechanical damage. However, no information is available about the tissue strength, tissue composition and structural organization leading to an enhanced resistance against damage and pathogen attack. Therefore, the aims of the study were the identification of genotypic differences concerning tissue strength of the beet, the relation to damage and pathogen infestation and the underlying physiological basis of tissue strength. Field trials were carried out with 6 genotypes at 2 locations in 2018. The roots were harvested in August and November. After harvest in November, a storage trial was carried out. The root strength increased from August to November. Beets with a high puncture resistance of the periderm also had a firm inner tissue. Genotypic differences in puncture resistance were not affected by the harvest time, indicating that this trait is stable throughout the growing period. A higher puncture resistance of the beet was related to a lower mould growth during storage. Genotypes with varying tissue strength also differed in fiber content (AIR), but the composition of AIR was stable over genotypes. The number of cambium rings seems not to essentially influence the tissue strength of the beet. In the further course of the project, microscopic analyzes will clarify, whether genotypic differences in tissue strength can be attributed to cell size or cell wall thickness.

Publisher

Verlag Dr. Albert Bartens KG

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3