Evaluating Translation Tools: Google Translate, Bing Translator, and Bing AI on Arabic Colloquialisms

Author:

Abdullah H Aldawsar Hamad

Abstract

This study examines the advancements in AI-driven machine translation, specifically focusing on the accurate translation of Arabic colloquial expressions. It aims to assess the progress made by Large Language Models, such as Bing AI Chat, compared to traditional machine translation systems. By focusing on colloquial expressions, this research aims to shed light on the challenges and opportunities for improvement in machine translation systems, particularly when dealing with the complexities of translating informal Arabic utterances. Building upon At-tall’s 2019 thesis, which compared Google Translate and human translators, the study employs the same Arabic sentences as a test dataset, allowing for a direct comparison between 2019 translations and those produced by current machine translation tools. The findings indicate limited improvement in Google Translate since 2019, with Bing Translator exhibiting a similar level of translation accuracy. In contrast, Bing AI Chat consistently outperformed the other systems, showcasing the potential of Large Language Model machine translation. Notably, Bing AI Chat provided interpretations and valuable comments on the tested Arabic phrases, demonstrating a deeper understanding of the intended meaning. This study contributes significantly to the field of machine translation by providing evidence of the potential of Large Language Model systems in producing more accurate Arabic-English translations. It emphasizes the advantage of Large Language Models in dealing with non-standard Arabic expressions, encouraging further exploration of Large Language Model-powered approaches in machine translation. The findings offer a promising pathway towards achieving more accurate and expressive translations across diverse languages and cultures.

Publisher

AWEJ Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3