Arsenic trioxide ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice through inducing apoptosis of CD4+ T cells

Author:

An Ke1,Xue Mengjiao1,Zhong Jiaying1,Yu Shengnan1,Qi Zhongquan2,Xia Junjie1

Affiliation:

1. Xiamen University

2. Guangxi University

Abstract

Abstract Background: Multiple sclerosis (MS) is an autoimmune disease of central nervous system characterized by severe demyelination of white matter. There is still no definite cure for MS because of its complex pathogenesis. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine that is used as a therapeutic application for many autoimmune diseases. It is also used to inhibit acute immune rejection because of its anti-inflammatory and immunosuppressive properties. However, it is unclear if ATO has a curative effect on EAE, and the underlying mechanisms have not been clearly elucidated. In this study, we attempted to explore the possibility of using ATO to ameliorate EAE in mice. Methods: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and proportion of CD4 + T cells. In vitro , to further investigate the mechanism that underly the ameliorating effects of ATO in EAE mice, CD4 + T cells were traeted with ATO and then used for apoptosis assay, JC-1 staining, transmission electron microscope, and western bloting. Results: We found that ATO alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation and decreased the expression of IL-2, IFN-γ, IL-1β, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4 + T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4 + T cells apoptosis through the mitochondrial pathway both in vitro and in vivo . Additionally, the administration of ATO had no adverse effect on liver and kidney function and did not induce apoptosis in the spinal cord. Conclusions: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3