Extended Spectrum Beta-Lactamase (ESBL) producing Escherichia coli and Klebsiella species in pediatric patients visiting International Friendship Children's Hospital, Kathmandu, Nepal

Author:

Kayastha Karuna1,Dhungel Binod1,Karki Shovana1,Adhikari Bipin2,Banjara Megha Raj1,Rijal Komal Raj1ORCID,Ghimire Prakash1

Affiliation:

1. Tribhuvan University Institute of Science and Technology

2. University of Oxford Nuffield College

Abstract

Abstract Background Emergence of antibiotic resistance among pathogenic strains has spread due to production of β-lactamases, which can lead to failure of empirical therapy in clinical settings. Inappropriate use of antibiotics, particularly third generation cephalosporins has contributed to the development of antimicrobial resistance (AMR). This study aims to determine the prevalence of Extended Spectrum β-Lactamase (ESBL) production in E. coli and Klebsiella species isolated from various clinical samples. Methods This cross-sectional study was conducted at International Friendship Children's Hospital, Kathmandu, Nepal from August 2017 to January 2018. Various clinical samples that included urine, pus, Cerebro-Spinal Fluid (CSF), body fluids, wound swab, endotracheal tip, catheter tip and blood were processed for culture. Following sufficient incubation, isolates were identified by colony morphology, gram staining and necessary biochemical tests. Identified bacterial isolates were then tested for antibiotic susceptibility test by modified Kirby Bauer disc diffusion method, and were subjected to Extended Spectrum Beta Lactamase (ESBL) screening by using 30µg cefotaxime and ceftazidime. ESBL production was confirmed by combination disc method. Results From a total of 103 non-duplicated clinical isolates, E. coli (n=79), Klebsiella pneumoniae (n=18) and K. oxytoca (n=6) were isolated from different clinical specimens. Majority (62.1%; 64/103) exhibited Multi-Drug Resistance (MDR) and 28.2% (29/103) were ESBL producers. All of ESBL producing isolates were resistant towards ampicillin, cefotaxime, ceftriaxone, ceftazidime. Most ESBL producers were found to be susceptible towards imipenem (89.7%; 26/29), nitrofurantoin (82.8%; 24/29), piperacillin/tazobactam (79.3%; 23/29), and Amikacin (72.4%; 21/29). Conclusions High prevalence of multi-drug resistant ESBL organisms found in this study warrants restricting empirical treatment of the bacterial infection. Identification of ESBL producers in routine treatment of infectious diseases can reduce unnecessary and inappropriate antimicrobial use and can reduce the preventable morbidity and mortality.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3