Assessing canopy structure in Andean (agro)forests using 3D UAV remote sensing

Author:

Bolívar-Santamaría Sergio1,Reu Björn1

Affiliation:

1. Universidad Industrial de Santander

Abstract

Abstract Agroforestry systems (AFS) are important for biodiversity conservation outside protected areas. The presence of shade trees in AFS form structurally complex habitats that provide food for many species. Habitat complexity is considered an essential biodiversity variable and its characterization is now possible using remote sensing techniques, including 3D point clouds derived from images obtained with unmanned aerial vehicles (UAVs). However, studies evaluating the relationship between canopy structure and variables derived from 3D clouds are rare for AFS, especially for the tropical Andes. Here, we show how six important variables of canopy structure can be predicted across a canopy structure gradient from AFS with cacao and coffee to a natural forest using characteristics extracted from the 3D point clouds and multiple linear regression. For leaf area index the best model obtained an R² of 0.82 with a relative RMSE = 24%, for canopy cover an R² of 0.81 and relative RMSE = 13%, for above-ground biomass (AGB) an R² of 0.81 and relative RMSE = 10%, the density of shade trees was predicted with an R² of 0.66 and relative RMSE = 34%, the mean height and the standard deviation of height in the canopy obtained an R² of 0.82 and 0.79 respectively, and relative RMSE of 18% for both. The approach presented in this study allows an accurate characterization of the canopy structure of AFS using UAVs, which can be useful for assessing above-ground biomass and biodiversity in tropical agricultural landscapes to monitor sustainable management practices and derive payments for ecosystem services.

Publisher

Research Square Platform LLC

Reference86 articles.

1. Agisoft, L. L. C., & St Petersburg, R. (2022). Agisoft metashape. Professional Edition, 7. web site. Available: http://www.agisoft.com. [Accessed August 17, 2022]

2. Carbon sequestration in agroforestry systems. Agriculture;Albrecht A;Ecosystems & Environment,2003

3. Forest Ecology and Management Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia;Alvarez E;Forest Ecology and Management,2012

4. Exploring management strategies to enhance the provision of ecosystem services in complex smallholder agroforestry systems;Andreotti F;Ecological indicators,2018

5. Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana;Asare R;Agroforestry Systems,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3