Exploring dominant processes for multi-month MJO prediction using deep learning

Author:

Yang Young-Min1ORCID,Kim Jeong-Hwan2ORCID,Park Jae-Heung3ORCID,Ham Yoo-Geun4,An Soon-Il5ORCID,Li Tim6ORCID,Wang Bin6

Affiliation:

1. Nanjing University of Information and science technology

2. Chonnam National University

3. Pohang University of Science and Technology

4. Chonnam National University/Korea

5. Yonsei University

6. University of Hawaii at Manoa

Abstract

Abstract Over a half-century, western Pacific (WP) warming trends are robust, increasing the magnitude and duration of Madden-Jullian Oscillation (MJO). The MJO affects global and regional climate through atmospheric teleconnection but the predictability of MJO in WP is limited up to 3-4weeks. Here, we utilized deep learning (DL) methods to investigate multi-month time scale (5–9 weeks) predictability. We tested many possible predictors over tropics based on major MJO theories or mechanisms to find a potential key factor for multi-month time scale MJO prediction. We showed that the potential predictability of MJO-related precipitation using DL extends to 6–7 weeks with a correlation of 0.60–0.65. The observational and heatmap analysis indicates that cooling anomalies in the central Pacific may contribute to increasing multi-month predictability by enhancing westerly anomalies over the Indian Ocean and warming in the WP with strong Walker circulation in the equatorial Pacific. Additional model experiments with observed sea surface temperature (SST) anomalies over the central Pacific (CP) confirm the contribution of CP SST to improved MJO-related convective anomalies over WP. These results show that DL is a useful tool for not only the improvement of MJO prediction but also for exploring possible mechanisms related to long-term predictability efficiently.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3