Abstract
Abstract
Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies (MM). Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Our HSN were dual-doped with rhodamine B isothiocyanate (RITC) and bis[3-(triethoxysilyl)propyl]tetrasulfide (BTES) to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with TPP and, for the first time, MITO-porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.
Publisher
Research Square Platform LLC