High-throughput image analysis with deep learning captures heterogeneity and spatial relationships after kidney injury

Author:

McElliott Madison C.1,Al-Suraimi Anas1,Telang Asha C.1,Ference-Salo Jenna T.1,Chowdhury Mahboob1,Soofi Abdul1,Dressler Gregory R.1,Beamish Jeffrey A.1

Affiliation:

1. University of Michigan–Ann Arbor

Abstract

Abstract Recovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample numbers. Here we report one approach to leverage deep learning tools to quantify heterogenous responses to kidney injury that can be deployed without specialized equipment or programming expertise. We first demonstrated that deep learning models generated from small training sets accurately identified a range of stains and structures with performance similar to that of trained human observers. We then showed this approach accurately tracks the evolution of folic acid induced kidney injury in mice and highlights spatially clustered tubules that fail to repair. We then demonstrated that this approach captures the variation in recovery across a robust sample of kidneys after ischemic injury. Finally, we showed markers of failed repair after ischemic injury were correlated both spatially within and between animals and that failed repair was inversely correlated with peritubular capillary density. Combined, we demonstrate the utility and versatility of our approach to capture spatially heterogenous responses to kidney injury.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3