Application of chitosan-citric acid variant resins in the cyclic sorption-desorption of toxic ions from Zn dominant Adsorbate system

Author:

Patel Prabhat Kumar1,Pandey Lalit Mohan1,Uppaluri Ramagopal V.S1

Affiliation:

1. Indian Institute of Technology Guwahati

Abstract

Abstract

Targeted sorbents for the real-world adsorptive separation of heavy metals shall exhibit high sorption capacity, reusability, and cost-effectiveness. In this study, a novel composite sorbent has been synthesized for the concurrent mitigation of iron, lead, and zinc metal ions from synthetic wastewater systems. For this purpose, chitosan with alternate molecular weight (low, medium, and high) and with hydroxyl and amine functional groups was employed as a substrate. The successful anchoring of the organic compound citric acid was achieved with the glutaraldehyde crosslinker. The work focused on the concurrent elimination of iron, lead, and zinc ions under diverse conditions of sorbent dose (0.2 to 2 g L− 1), initial concentration (194.9-584.7 mg L− 1, 2.65–7.95 mg L− 1, and 104.8-314.4 mg L− 1 respectively for zinc, lead, and iron), and adsorbent contact duration (5 to 720 min). Accordingly, it was ascertained that other alternative ions in the adsorbate system significantly alter the sorption patterns. Following this, the desorption of metal ions was effective with simple basic and acidic eluents and for a three-cycle-based simultaneous regeneration. In summary, the findings demonstrate the promising performance of the sorbent for metal ions eradication from intricate solutions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3