Affiliation:
1. Institute of Applied Physics
Abstract
Abstract
Lagrangian stochastic models (LSM) are widely used to model the dispersion of sea spray droplets injected from the water surface into the marine atmospheric boundary layer (MABL) and for evaluation of the spray impact on the exchange fluxes between the atmosphere and the ocean. While moving through the MABL the droplets pass through the region of high gradients of air velocity, temperature and humidity occurring in the vicinity of the air-water interface. In this case, the applicability of LSMs constructed under the assumption of weakly inhomogeneous flows is questionable. In this work, we develop a Lagrangian stochastic model taking into account the strongly inhomogeneous structure of the airflow in MABL and, in particular, the anisotropy of turbulence dissipation rate. The model constants and the diffusion matrix coefficients are calibrated by comparison of the LSM prediction for the profiles of droplet concentration and the exchange fluxes of sensible and latent heat against the results of direct numerical simulation (DNS) of turbulent, droplet-laden airflow over a waved water surface.
Publisher
Research Square Platform LLC
Reference37 articles.
1. Production velocity of sea spray droplets;Andreas EL;J Geophys Res,2010
2. Andreas EL (2013) An Algorithm for fast microphysical calculations that predict the evolution of saline droplets, http://people.nwra.com/resumes/andreas/free_software/Fast_Microphys_V1.1.zip (date of access 28/12/2015)
3. Simulation of a particle-laden turbulent channel flow using an improved stochastic Lagrangian model;Arcen B;Phys Fluids,2009
4. Direct numerical simulation of a turbulent wind over a wavy water surface;Druzhinin OA;J Geophys Res,2012
5. The study of droplet-laden turbulent air flow over a waved water surface by direct numerical simulation;Druzhinin OA;J Geophys Res Oceans,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献