Assessing the Effectiveness of Automatic Speech Recognition Technology in Emergency Medicine Settings: A Comparative Study of Four AI-powered Engines

Author:

Luo Xiao1,Zhou Le2,Adelgais Kathleen3,Zhang Zhan2

Affiliation:

1. Oklahoma State University

2. Pace University

3. University of Colorado

Abstract

Abstract

Purpose Cutting-edge automatic speech recognition (ASR) technology holds significant promise in transcribing and recognizing medical information during patient encounters, thereby enabling automatic and real-time clinical documentation, which could significantly alleviate care clinicians’ burdens. Nevertheless, the performance of current-generation ASR technology in analyzing conversations in noisy and dynamic medical settings, such as prehospital or Emergency Medical Services (EMS), lacks sufficient validation. This study explores the current technological limitations and future potential of deploying ASR technology for clinical documentation in fast-paced and noisy medical settings such as EMS. Methods In this study, we evaluated four ASR engines, including Google Speech-to-Text Clinical Conversation, OpenAI Speech-to-Text, Amazon Transcribe Medical, and Azure Speech-to-Text engine. The empirical data used for evaluation were 40 EMS simulation recordings. The transcribed texts were analyzed for accuracy against 23 Electronic Health Records (EHR) categories of EMS. The common types of errors in transcription were also analyzed. Results Among all four ASR engines, Google Speech-to-Text Clinical Conversation performed the best. Among all EHR categories, better performance was observed in categories “mental state” (F1 = 1.0), “allergies” (F1 = 0.917), “past medical history” (F1 = 0.804), “electrolytes” (F1 = 1.0), and “blood glucose level” (F1 = 0.813). However, all four ASR engines demonstrated low performance in transcribing certain critical categories, such as “treatment” (F1 = 0.650) and “medication” (F1 = 0.577). Conclusion Current ASR solutions fall short in fully automating the clinical documentation in EMS setting. Our findings highlight the need for further improvement and development of automated clinical documentation technology to improve recognition accuracy in time-critical and dynamic medical settings.

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Gilchrist. Tethered to the EHR: primary care physician workload assessment using EHR event log data and time-motion observations;Arndt BG;Annals Family Med,2017

2. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties;Sinsky C;Ann Intern Med,2016

3. It is like texting at the dinner table’: a qualitative analysis of the impact of electronic health records on patient–physician interaction in hospitals;Pelland KD;BMJ Health Care Inf,2017

4. On the use of electronic documentation systems in fast-paced, time-critical medical settings;Sarcevic A;Interact Comput,2017

5. Park SY, Chen Y (2012) Adaptation as design: learning from an EMR deployment study. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2097–2106

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3