Aerosol jet printing polymer dispersed liquid crystals on highly curved optical surfaces and edges

Author:

DAVIES MATTHEW1,HOBBS MATTHEW J.1,NOHL JAMES1,DAVIES BENEDICT1,RODENBURG CORNELIA1,WILLMOTT JON R.1

Affiliation:

1. University of Sheffield

Abstract

Abstract We demonstrate a new technique for producing Polymer Dispersed Liquid Crystal (PDLC) devices utilising aerosol jet printing (AJP). PDLCs require two substrates to act as scaffold for the Indium Tin Oxide electrodes, which restricts the device geometries. Our approach precludes the requirement for the second substrate by printing the electrode directly onto the surface of the PDLC, which is also printed. The process has the potential to be precursory to the implementation of non-contact printing techniques for a variety of liquid crystal-based devices on non-planar substrates. We report the demonstration of direct deposition of PDLC films onto non-planar optical surfaces, including a functional device printed over the 90° edge of a prism. Scanning Electron Microscopy is used to inspect surface features of the polymer electrodes and the liquid crystal domains in the host polymer. The minimum relaxation time of the PDLC was measured at 1.3 ms with an 800 Hz, 90 V, peak-to-peak (Vpp) applied AC field. Cross-polarised transmission is reduced by up to a factor of 3.9. A transparent/scattering contrast ratio of 1.4 is reported between 0 V and 140 V at 100 Hz.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3