Doxorubicin-induced neurotoxicity differently affects the hippocampal formation subregions in adult mice

Author:

Dias-Carvalho Ana1,Ferreira Mariana1,Reis-Mendes Ana1,Ferreira Rita2,Bastos Maria Lourdes1,Fernandes Eduarda1,Sá Susana Isabel1,Capela João Paulo1,Carvalho Félix1,Costa Vera Marisa1

Affiliation:

1. University of Porto

2. LAQV/REQUIMTE, University of Aveiro

Abstract

Abstract Doxorubicin (DOX) is an anthracycline used to treat a wide range of tumours. Despite its effectiveness, it is associated to a long range of adverse effects of which cognitive deficits stand out. The present study aimed to assess the neurologic adverse outcome pathways of two clinically relevant cumulative doses of DOX. Adult male CD-1 mice received biweekly intraperitoneal administrations for 3 weeks until reaching cumulative doses of 9 mg/kg (DOX9) or 18 mg/kg (DOX18). Animals were euthanized one week after the last administration, and biomarkers of oxidative stress and brain metabolism were evaluated in the whole brain. Coronal sections of fixed brains were used for specific determinations on the prefrontal cortex (PFC) and hippocampal formation (HF). In the whole brain, DOX18 tended to disrupt the antioxidant defences, affecting glutathione levels and manganese superoxide dismutase (MnSOD) expression. Considering the regional analysis, DOX18 increased the volume of all brain areas evaluated, while GFAP-immunoreactive astrocytes decreased in the dentate gyrus (DG) and increased in the CA3 region of HF both in a dose-dependent manner. Concerning apoptosis pathway, whereas Bax increased in the DOX9 group, it decreased in the DOX18 group, but only in the latter group, Bcl-2 levels also decreased. While p53 only increased in the CA3 region of the DOX9 group, AIF increased in the PFC and DG of DOX18. Finally, phosphorylation of Tau decreased with the highest DOX dose in DG and CA3, while TNF-α levels increased in CA1 of DOX18. Our results indicate new pathways not yet described that could be responsible for the cognitive impairments observed in treated patients.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3