Spatio-temporal dynamics of dissolved organic matter and disinfection byproducts formation potential of Shengzhong Lake in southwest China

Author:

Wang Yunwen1,Ren Dong1,Li Yunxiang1,Hao Zhineng2,Liu Jingfu3

Affiliation:

1. China West Normal University

2. Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences

3. Jianghan University

Abstract

Abstract The quality and quantity of dissolved organic matter (DOM) in lakes as well as its environmental effects associated with the unintended disinfection byproducts (DBPs) have received continuous attention. This work investigated the spatio-temporal dynamics of DOM in Shengzhong Lake in southwest China and the formed DBPs during the chlorine disinfection process. The results showed that lake water in summer had significantly higher dissolved oxygen and dissolved organic carbon than that in winter. In contrast, DOM in winter demonstrated an obviously higher aromaticity and molecular weight than that in summer. Four fluorescence components, i.e., terrestrial humic-like substances (C1), protein-like substances (C2) and microbial humic-like substances (C3 and C4), were identified, and their relative abundance followed in the order of C3 > C4 > C2 > C1 in winter and C4 > C3 > C1 > C2 in summer. The formation potential of trihalomethanes and haloacetic acids in winter were higher and lower than that in summer, which were mainly ascribed to the content of aromatic and hydrophobic substances. Compared to the significant seasonal dynamic, the spatial variation of DOM and the formed DBPs was not obvious. This work sheds light on the spatial-temporal distribution of DOM and the potentially formed DBPs in Shengzhong Lake, and will be helpful for the protection and management of drinking water.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3