Investigating the Impact of Substrate Defects on the Operational Performance of a Silicon-Substrate Bimorph Piezoelectric Energy Harvester

Author:

Jamshiddoust Asghar1,Karamooz Morteza1,Farrokhabadi Amin1

Affiliation:

1. Tarbiat Modares University

Abstract

Abstract Cracks are prevalent defects found in micro-electromechanical systems, influencing both the operational dynamics and performance of these structures. These cracks have the potential to alter the stiffness of the structure and impact various parameters such as resonance frequency, voltage, and output power. This transformation may eventually result in structural failure over a defined period. Hence, it is imperative to diagnose and detect structural cracks. In this study, we introduce a semi-analytical method to examine transverse cracks occurring within the mid-layer of a bimorph piezoelectric energy harvester. The investigation encompasses reductions in stiffness and variations in capacitance resulting from mid-layer transverse cracks. From a microscale perspective, we employ a stress transfer technique based on crack density to quantify stiffness reduction caused by mid-layer cracks. Analytical outcomes concerning the influence of cracks in the mid-layer of the bimorph are obtained using assumptions derived from the Euler-Bernoulli beam theory and substantiated through finite element analysis. The consequences of these imperfections on mechanical parameters such as resonance frequency, as well as electrical parameters like output electrical power, are deliberated upon. It is observed that the existence of cracks in the mid-layer of the bimorph piezoelectric energy harvester leads to a decline in its resonance frequency, accompanied by an increase in voltage and output power, indicative of impending device malfunction. This research facilitates the identification of defects in MEMS by monitoring the harvester's operational performance.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3