Enhancing external quantum efficiency in a sky-blue OLED by charge transfer via Si quantum dots

Author:

PEI ZINGWAY1,WEI HAN YUN1,LIU YI CHUN1,SUBRAMANI THIYAGU2,FUKATA NAOKI2

Affiliation:

1. National Chung Hsing University

2. National Institute for Materials Science (NIMS)

Abstract

Abstract

Organic light-emitting diodes (OLEDs) aim to achieve high efficiency by using excitons to achieve a 100% quantum efficiency (QE). However, developing functional organic materials for this purpose can be time-consuming. To address this challenge, a new method has been proposed to incorporate inorganic quantum dots into the organic luminescent layer to enable unlimited exciton formation and approach the 100% QE limit. Inorganic quantum dots are clusters of atoms that contain numerous thermally generated electrons and holes at conduction and valence bands. Immersed quantum dots act as charge generation centers, providing electrons and holes with unlimited amounts to form excitons. After radiative recombination, these excitons generate photons that cause internal QE to nearly 100%. This concept has been demonstrated using Silicon quantum dots (SiQDs) and phosphorescent materials. The average size of SiQDs is approximately 6 nm, and they are well-dispersed within the guest-host blue phosphorescent light-emitting materials. With only 5×10-3 % (in weight) of SiQDs in the precursor, external QE increased from 2% to 17.7%, nearly a nine-fold enhancement. The prolonged decay time from 1.68 to 5.97 ns indicates that electrons are transferred from SiQDs to the luminescent materials. This universal method can be applied to green and red emissions with various inorganic quantum dots in different organic luminescent material systems.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3