Affiliation:
1. NCKU: National Cheng Kung University
2. National Cheng Kung University
3. KASI: Korea Astronomy and Space Science Institute
Abstract
Abstract
A giant ionospheric hole was simultaneously detected in the in-situ measurements of FORMOSAT-7/COSMIC-2 (F7/C2), Ionospheric Connection Explorer (ICON), Swarm missions, and ground-based total electron content (TEC) by global navigation satellite system receivers, and F7/C2 Global Ionosphere Specification (GIS) data near Tonga, following the explosive volcano eruption on 15 January 2022. The TEC maps displayed the huge depletions that developed near Tonga after the eruption and gradually evolved. The ICON IVM, F7/C2 IVM and Swarm-LP detected large depletions not only near Tonga but also in the EIA trough region. The GIS observations clearly show the ionospheric hole that extends spatially near Tonga, especially strongly south/southward. The simultaneous observations showed that the ionosphere hole near Tonga combined with the EIA trough and finally evolved into a giant ionosphere hole around 07 UT. The ionospheric hole, which occurred at 05 UT near Tonga, extended over a wide area of 160°-200°E and 25°S-20°N and lasted for about 11 hours. The F7/C2 and ICON satellites overpasses showed large ion density depletions by the hole at orbit altitudes, accompanied by enhancements in ion temperature and field-aligned and vertical ion drift. Such a long-lasting giant ionospheric hole by a seismic event has not been reported earlier, creating a unique ionospheric environment near Tonga after the eruption. The strong successive impulses by multiple volcano eruptions, together with O/N2 decrease in the summer hemisphere, interhemispheric wind, and water vapor injection into high altitudes apparently yielded such a giant ionospheric hole, 4 ~ 6 times larger than that observed during the Tohoku earthquake.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献