A Multi-Scale Channel Attention Network with Federated Learning for Magnetic Resonance Image Super-Resolution

Author:

Liu Feiqiang1,Jiang Aiwen1,Chen Lihui2

Affiliation:

1. Jiangxi Normal University

2. Chongqing University

Abstract

Abstract

Magnetic resonance (MR) images are widely used for clinical diagnosis, whereas its resolution is always limited by some surrounding factors, and under-sampled data is usually generated during imaging. Since high-resolution (HR) MR images contribute to the clinic diagnosis, reconstructing HR MR images from these under-sampled data is pretty important. Recently, deep learning (DL) methods for HR reconstruction of MR images have achieved impressive performance. However, it is difficult to collect enough data for training DL models in practice due to medical data privacy regulations. Fortunately, federated learning (FL) is proposed to eliminate this issue by local/distributed training and encryption. In this paper, we propose a multi-scale channel attention network (MSCAN) for MR image super-resolution (SR) and integrate it into an FL framework named FedAve to make use of data from multiple institutions and avoid privacy risk. Specifically, to utilize multi-scale information in MR images, we introduce a multi-scale feature block (MSFB), in which multi-scale features are extracted and attention among features at different scales is captured to re-weight these multi-scale features. Then, a spatial gradient profile loss is integrated into MSCAN to facilitate the recovery of textures in MR images. Last, we incorporate MSCAN into FedAve to simulate the scenery of collaborated training among multiple institutions. Ablation studies show the effectiveness of the multi-scale features, the multi-scale channel attention, and the texture loss. Comparative experiments with some state-of-the-art (SOTA) methods indicate that the proposed MSCAN is superior to the compared methods and the model with FL has close results to the one trained by centralized data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3