Targeting Cellular Plasticity: Esculetin-Driven Reversion of Stemness and EMT Phenotype in Transforming Cells with Sequential p53/p73 Knockdowns

Author:

Mathur Ankit1,Bareja Chanchal2,Mittal Milky2,Singh Anjali2,Saluja Daman1

Affiliation:

1. Delhi School of Public Health, Institution of Eminence, University of Delhi

2. Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi

Abstract

Abstract The intricate interplay of cancer stem cell plasticity, along with the bidirectional transformation between epithelial-mesenchymal states, introduces further intricacy to offer insights into newer therapeutic approaches. Differentiation therapy, while successful in targeting leukemic stem cells, has shown limited overall success, with only a few promising instances. Using colon carcinoma cell strains with sequential p53/p73 knockdowns, our study underscores the association between p53/p73 and the maintenance of cellular plasticity. Morphological alterations corresponding with cell surface marker expressions, transcriptome analysis and functional assays were performed to access stemness and EMT (Epithelial-Mesenchymal Transition) characteristics in the spectrum of cells exhibiting sequential p53 and p73 knockdowns. Notably, our investigation explores the effectiveness of esculetin in reversing the shift from an epithelial to a mesenchymal phenotype, characterized by stemness traits. Esculetin significantly induces enterocyte differentiation and promotes epithelial cell polarity by altering Wnt axes in Cancer Stem Cells (CSCs) characterized by high mesenchymal features. These results align with our previous findings in leukemic blast cells, establishing esculetin as an effective differentiating agent in both Acute Myeloid Leukemia (AML) and solid tumor cells.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3