Radicular intracanal splitting forces and cutting efficiency of NiTi rotary versus reciprocating systems: A comparative in vitro study

Author:

AL-JADAA Anas1ORCID,ALSMADI Ranya F.1,SALEM Wesal M.1,ABDULRIDHA Aya A.1,AFRASHTEHFAR Kelvin I.2ORCID

Affiliation:

1. Ajman University College of Dentistry

2. Ajman University College of Dentistry / Department of Reconstructive Dentistry & Gerodontology, ZMK, University of Bern

Abstract

Abstract This study aimed to compare the intracanal lateral force and cutting efficiency associated with two engine-driven nickel-titanium (NiTi) systems during root canal shaping. Bovine single-rooted teeth models were assembled to a custom-made splitting force measuring platform while being endodontically treated with rotary (ProTaper Gold [PTG]) or reciprocal systems (WaveOne Gold [WOG]) by two clinicians. The cutting efficiency test was run for each group by a free-falling endomotor on dentin discs for 3 minutes. The resulting force, files, and stroke force peaks were recorded. Data were analyzed by the Shapiro-Wilk test and ANOVA. Statistical significance was set at alpha = 0.05. Intraracanal lateral forces (p < 0.01), cutting efficiency (p < 0.01), and time efficiency (p < 0.01) were significantly different between the NiTi groups. The maximum lateral splitting force was detected using the PTG shaping full-length file (S1) and during the WOG final stroke. Thus, caution is advised when reciprocating single-file systems approach the apical third or when using large taper and wide-diameter rotatory instruments. The WOG had significantly less maximum horizontal splitting force and significantly greater cutting efficiency but less time efficiency than the PTG system.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3