Effect of Si Content on the Morphology Evolution of the Si Primary Dendrites in Al-Si Alloy Solvent Refining Process

Author:

Gao Mangmang1,Zhao Xu1,Gao Ang1,Li Rui1,Chen Wenyu1,Gao Min1,Liang Sen1,Li Haibo1

Affiliation:

1. Ningxia University

Abstract

Abstract Solvent refining with Al-Si alloy is a promising purification method for production of solar-grade silicon (SoG-Si) feedstock owing to the advantages of low production cost and high impurity removal efficiency. In this process, larger refined Si primary dendrites are easily collected after acid leaching, which is favorable to recovery, thereby to reduce the production cost. Hence, the growth behavior of the precipitated Si crystal must be investigated systematically. In present work, the morphology evolution of solidified Al-Si alloys with a wide range of Si content (30~70 wt.%) was analyzed. The typical plate-like Si primary dendrites grown following the twin plane re-entrance edge (TPRE) mechanism formed in all alloy compositions. As increasing the Si content from 30 wt.% to 50 wt.%, the Si primary dendrites underwent a coarsening process attributed to the preferred growth along <211> and <111> directions, leading to an increase in the experimental recovery rate. However, the preferred growth along <211> direction was inhibited when the Si content is higher than 55 wt.%. Moreover, the broken effect originating from grain collision and thermal stress on the Si primary dendrites was enhanced as further increasing the Si content, resulting in a decrease in the experimental recovery rate. Therefore, the optimum composition is determined as Al-50~55 wt.% Si for solvent refining solution, based on the cost reduction consideration.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3