Integrating genetic and clinical data to predict lung cancer in patients with chronic obstructive pulmonary disease

Author:

Gu Zhan1,Wu Yonghui1,Yu Fengzhi1,Sun Jijia2,Wang Lixin1

Affiliation:

1. Shanghai Pulmonary Hospital

2. Shanghai University of Traditional Chinese Medicine

Abstract

Abstract Background Chronic obstructive pulmonary disease (COPD) is closely linked to lung cancer (LC) development. The aim of this study is to identify the genetic and clinical risk factors for LC risk in COPD, according to which the prediction model for LC in COPD was constructed. Methods This is a case-control study in which patientis with COPD + LC as the case group, patientis with only COPD as the control group, and patientis with only LC as the second control group. A panel of clinical variables including demographic, environmental and lifestyle factors were collected. A total of 20 single nucleotide polymorphisms (SNPs) were genotyped. The univariate analysis, candidate gene study and multivariate analysis were applied to identify the independent risk factors, as well as the prediction model was constructed. The ROC analyses were used to evaluate the predictive ability of the model. Results A total of 503 patients were finally enrolled in this study, with 188 patients for COPD + LC group, 162 patients for COPD group and 153 patients for LC group. The univariate analysis of clincial data showed compared with the patients with COPD, the patients with COPD + LC tended to have significantly lower BMI, higher smoking pack-years, and higher prevalence of emphysema. The results of the candidate gene study showed the rs1489759 in HHIP and rs56113850 in CYP2A6 demonstrated significant differences between COPD and COPD + LC groups. By using multivariate logistic regression analysis, four variables including BMI, pack-years, emphysema and rs56113850 were identified as independent risk factors for LC in COPD and the prediction model integrating genetic and clinical data was constructed. The AUC of the prediction model for LC in COPD reached 0.712, and the AUC of the model for predicting LC in serious COPD reached up to 0.836. Conclusion The rs56113850 (risk allele C) in CYP2A6, decrease in BMI, increase in pack-years and emphysema presence were independent risk factors for LC in COPD. Integrating genetic and clinical data for predicting LC in COPD demonstrated favorable predictive performance.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3