Oceanic cloud trends during the satellite era and their radiative signatures

Author:

Tselioudis George1ORCID,Rossow William B.2,Bender Frida3,Oreopoulos Lazaros1,Remillard Jasmine1

Affiliation:

1. NASA Goddard Space Flight Center

2. Franklin, NY

3. Stockholms Universitet

Abstract

Abstract

The present study analyzes zonal mean cloud and radiation trends over the global oceans for the past 35 years from a suite of satellite datasets covering two periods. In the longer period (1984-2018) cloud properties come from the ISCCP-H, CLARA-A3, and PATMOS-x datasets and radiative properties from the ISCCP-FH dataset, while for the shorter period (2000-2018) cloud data from MODIS and CloudSat/CALIPSO and radiative fluxes from CERES-EBAF are added. Zonal mean Total Cloud Cover (TCC) trend plots show an expansion of the subtropical dry zone, a poleward displacement of the midlatitude storm zone and a narrowing of the tropical Intertropical Convergence Zone (ITCZ) region over the 1984-2018 period. This expansion of the ‘low cloud cover curtain’ and the contraction of the ITCZ rearrange the boundaries and extents of all major climate zones, producing a more poleward and somewhat narrower midlatitude zone and a wider subtropical zone. Zonal mean oceanic cloud cover trends, when examined in terms of distinct latitude zones, two poleward of 50o and one bounded within 50oS and 50oN, show upward or near-zero cloud cover trends in the high latitude zones and consistent downward trends in the low latitude zone. The latter dominate in the global average resulting in TCC decreases that range from 0.72% per decade to 0.17% per decade depending on dataset and period. These contrasting cloud cover increases and decreases between the high and low latitude zones produce contrasting low latitude cloud radiative warming and high latitude cloud radiative cooling effects, present in both the ISCCP-FH and CERES-EBAF datasets. The global ocean mean trend of the Short Wave Cloud Radiative Effect (SWCRE) depends on the balance between these contrasting trends, and in the CERES dataset this balance is a SW cloud radiative warming trend of 0.12 W/m2/decade coming from the dominance of the low-latitude positive SWCRE trends while in the ISCCP-FH dataset it is a 0.3 W/m2/decade SW cloud radiative cooling trend coming from the dominance of the high latitude negative SWCRE trends. The CERES cloud radiative warming trend doubles in magnitude to 0.24 W/m2/decade when the period is extended from 2016 to 2022, implying a strong cloud radiative heating in the past 6 years coming from the low latitude zone.

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Historical trends in the jet streams;Archer CL;Geophys Res Lett,2008

2. Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift;Bender FA-M;Clim Dyn,2012

3. Response of the Intertropical Convergence Zone to climate change: Location, width, and strength;Byrne MP;Curr Clim Change Rep,2018

4. Observational constraint on cloud feedbacks suggests moderate climate sensitivity;Cesana GV;Nat Clim Change,2021

5. Cho N, Tan J, Oreopoulos L (2021) : Classifying planetary cloudiness with an updated set of MODIS Cloud Regimes Journal of Applied Meteorology and Climatology [10.1175/jamc-d-20-0247.1]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3