Identification and validation of ferroptosis-Related genes in sarcopenia

Author:

Chen Yanzhong1,Zhang Yaonan1,Zhang Sihan1,Ren Hong1

Affiliation:

1. Beijing Sport University

Abstract

Abstract Background: Ferroptosis, characterized by iron accumulation and lipid peroxidation, leads to cell death. Growing evidence suggests the involvement of ferroptosis in sarcopenia. However, the fundamental ferroptosis-related genes (FRGs) for sarcopenia diagnosis, prognosis, and therapy remain elusive. This study aimed to identify molecular biomarkers of ferroptosis in sarcopenia patients. Methods: Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between normal and sarcopenia samples were identified using the "limma" package in R software. FRGs were extracted from GeneCards and FerrDB databases. Functional enrichment analysis determined the roles of DEGs using the "clusterProfiler" package. A protein-protein network was constructed using Cytoscape software. Immune infiltration analysis and receiver operating characteristic (ROC) analysis were performed. mRNA-miRNA, mRNA-TF, and mRNA-drug interactions were predicted using ENCORI, hTFtarget, and CHIPBase databases. The network was visualized using Cytoscape. Results: We identified 46 FRGs in sarcopenia. Functional enrichment analysis revealed their involvement in critical biological processes, including responses to steroid hormones and glucocorticoids. KEGG enrichment analysis implicated pathways such as carbon metabolism, ferroptosis, and glyoxylate in sarcopenia. Totally, 11 hub genes were identified, and ROC analysis demonstrated their potential as sensitive and specific markers for sarcopenia in both datasets. Additionally, differences in immune cell infiltration were observed between normal and sarcopenia samples. Conclusion: The hub genes identified in this study are closely associated with ferroptosis in sarcopenia and can effectively differentiate sarcopenia from controls. CDKN1A, CS, DLD, FOXO1, HSPB1, LDHA, MDH2, and YWHAZ show high sensitivity and specificity for sarcopenia diagnosis.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3