Larvicidal potential and molecular docking analysis of metabolites from new Egyptian bacterial strains as effective biological control agents against Culex pipiens (L: Diptera)

Author:

Mansour Tokaa1,Radwan Wafaa H.1,Mansour Menna1,Gomaa Mohamed1,Shepl Mohamed1,Farouk Farouk1,Soliman Ahmed G.1,ElHalim Basma T. Abd-1,El-Senosy Mohamed M.K.1,bakry Ashraf1,Ebeed Naglaa1,Alsenosy Neima K.1,Elhariry Hesham1,galal Ahmed1,El-Sayed Salwa M.1,Adly Eslam1,Abu-Hussien Samah H.1

Affiliation:

1. Ain Shams University

Abstract

Abstract Mosquito control in Egypt depends on applying chemical synthetic pesticides that impact negatively on human health and the environment as well as the development of antibiotic and chemical resistance. This study aims to control the 3rd and 4th instars of Culex pipines larvae using four bacterial strains. According to Phenotypic and molecular identification, the four isolates were identified as Bacillus subtilis MICUL D2023, Serratia marcescens MICUL A2023, Streptomyces albus LARVICID, and Pseudomonas fluorescens MICUL B2023. All strains were deposited in GenBank under accession numbers OQ764791, OQ729954, OQ726575, and OQ891356, respectively. Larvicidal activity of all microbial strain metabolites against a field strain of C. pipines explored low LC50 results and reached its lowest values on the 3rd day with values of 6.40, 38.4, and 46.33 for P. fluorescens, S. albus, and S. marcescens, respectively. In addition, metabolites of P. fluorescence were more toxic than those of S. albus, followed by S. marcescens. B. subtilis shows no larvicidal effect on both field and lab mosquito strains. Microscopic alterations of 3rd and 4th instars showed toxic effects on different body parts (thorax, midgut, and anal gills), including losing external hairs, abdominal breakage, and larvae shrinkage, as well as different histological malformations in the digestive tract, midgut, and cortex. GC-MS analysis detected 51, 30, and 32 different active compounds from S. albus, S. marcescens, and P. fluorescens, respectively. GC detected 1, 2-BENZEA2:A52NEDICARBOXYLIC ACID, 2-Cyclohexene-1-carboxylic-acid-5-2-butenyl-methyl ester, and 3 octadecahydro2R3S4Z9Z-11R-12S from S. albus, S. marcesens, and P. fluorescens, respectively. Total protein, Total carbohydrate, and Acetylcholine esterase activity indicated significantly low levels on the 3rd day. All strain metabolites were safe against HSF cell lines. The docking results confirmed the role of the produced metabolites as larvicidal agents and Acetylcholine esterase inhibition. Such a problem need more studies on applying more and more natural pesticides.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3