Data-Driven City: An Innovative Approach to Urban Area Delineation

Author:

Fang Chenyu1,Zhou Lin1,Gu Xinyue2,Liu Xing3,Werner Martin1

Affiliation:

1. Technical University of Munich

2. The Hong Kong Polytechnic University

3. China academy of urban planning & design Shenzhen

Abstract

Abstract

This study introduces a data-driven, bottom-up approach to urban delineation, integrating feature engineering with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, marking a significant shift from traditional methodologies reliant on simplistic OpenStreetMap (OSM) road node data aggregations. By employing a broad array of OSM categories and refining data selection through feature engineering, our research significantly enhances the precision and relevance of urban clustering. Using Bavaria, Germany, as a case study, we demonstrate that feature engineering effectively reduces noise and mitigates common DBSCAN clustering pitfalls by filtering out irrelevant and autocorrelated data. The method's robustness is validated through a comprehensive assessment involving accuracy metrics, optimal clustering selections based on entropy values, and empirical and theoretical confirmations using nighttime light data and Zipf’s Law, respectively. This study contributes to urban studies by providing a scalable, replicable model that incorporates advanced data processing techniques and multidimensional data sources, supporting improved urban planning and policy-making while effectively delineating urban boundaries in varied settings.

Publisher

Springer Science and Business Media LLC

Reference84 articles.

1. Survey on anomaly detection using data mining techniques;Agrawal S;Procedia Computer Science,2015

2. "Cities and regions in Britain through hierarchical percolation;Arcaute Elsa;Royal Society open science,2016

3. Basu, A., Garain, A., and Naskar, S.K., 2019. Word difficulty prediction using convolutional neural networks. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), 1109–1112.

4. Rank clocks;Batty M;Nature,2006

5. Definitions of urban areas feasible for examining urban health in the European Union;Breckenkamp J;The European Journal of Public Health,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3