Gelcast Zirconia Ceramics With High Strength and Simultaneously High Translucency for Dental Applications

Author:

Kastyl Jaroslav1ORCID,Chlup Zdenek2,Pouchly Vaclav1,Song Lu3,Scasnovic Erik1,Trunec Martin1

Affiliation:

1. Brno University of Technology

2. Institute of Physics of Materials, Czech Academy of Sciences

3. Tsinghua University

Abstract

Abstract Translucent zirconia represents a favourite material for monolithic ceramic dental restorations. However, materials approaches employed so far to improve the translucency of zirconia ceramics are accompanied by a significant decline in strength. Thus, we aimed to develop dental 3Y-TZP ceramics that can provide excellent strength and, simultaneously, enhanced translucency. In this investigation, machinable tetragonal zirconia ceramics based on fine mesostructured zirconia particles stabilized with 3 mol% of yttria and prepared by the gelcasting processing method were developed. Properties of sintered samples were characterised, namely: shrinkage, density, structure, surface roughness, hardness, biaxial strength, and total forward transmittance. Zirconia ceramics with an average biaxial strength of 1184 MPa and a total forward transmittance of 46.7% for a 0.5 mm thick sample at a wavelength of 600 nm were obtained. These ceramics exhibited homogeneous structure with grains sizes up to 620 nm and purely tetragonal phase composition. The developed ceramics provided a favourable combination of high translucency comparable even with the mixed cubic/tetragonal structure of a common 4Y-TZP, and very high strength that is achievable only in the pure tetragonal 3Y-TZP.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3