Structural Dynamics of Human deoxyuridine 5'- triphosphate nucleotidohydrolase (dUTPase)

Author:

Sarre Ravdna1,Dobrovolska Olena2,Lundström Patrik3,Turcu Diana2,Agback Tatiana4,Halskau Øyvind2,Isaksson Johan1

Affiliation:

1. UiT the Arctic University of Norway

2. University of Bergen

3. Linköping University

4. Swedish University of Agricultural Sciences

Abstract

Abstract

Structural- and functional heterogeneity, as well as allosteric regulation, in homo-monomeric enzymes is a highly active area of research. One such enzyme is human nuclear-associated deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), which has emerged as an interesting drug target in combination therapy with traditional nucleotide analogue treatment of cancer. We report, for the first time, a full structural dynamics study of human dUTPase by NMR. dUTPase has been investigated in terms of structural dynamics in its apo form, in complex with the modified substrate resistant to hydrolysis, 2'-deoxyuridine 5'-α,β-imido-triphosphate (dUpNHpp), as well as the product, 2'-deoxy-uridine-monophosphate (UMP). The apo form of the enzyme displayed slow dynamics in the milli- to microsecond regime in relaxation dispersion experiments, which was further slowed down to observable heterogeneity upon substrate-analogue binding. The results suggest that the non-hydrolysable substrate-analogue traps the enzyme in the conformational isomerization step that has been previously suggested to be part of the enzyme catalysis kinetics cycle. The observed heterogeneity fits well with the pattern expected to emerge from the suggested kinetic model, and no evidence for homotropic allosterism was found. The heatmaps of the slow dynamics, chemical shift perturbation upon substrate binding and conserved regions of the enzyme sequence all displayed a similar pattern, which suggests that the structural dynamics is finely tuned and important for the biological function of the enzyme for binding, conformational shift, catalysis and substrate release.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3