A machine learning model based on placental magnetic resonance imaging and clinical factors to predict fetal growth restriction

Author:

Wang Jida1,Chen Zhuying1,Zhang Hongxi2,Li Weikang2,Li Kui1,Deng Meixiang1,Zou Yu1

Affiliation:

1. Women's Hospital, School of Medicine, Zhejiang University

2. Children's Hospital, Zhejiang University School of Medicine

Abstract

Abstract

Objectives To create a placental radiomics-clinical machine learning model to predict FGR. Materials and Methods Retrospectively analyzed placental MRI and clinical data of 110 FGR cases and 158 healthy controls from two campuses of ZWH. 227 cases from Hubin campus were randomly divided into training (n = 182) and internal testing set (n = 45). 41 cases from Xiaoshan campus were included in external testing set. Placental MRI features were extracted from sagittal T2WI. Mann-Whitney U test, redundancy analysis, and LASSO were used to identify the radiomics signature, and the best-performing radiomics model was constructed by comparing eight machine learning algorithms. Clinical factors determined by univariate and multivariate analyses. A united model and nomogram combining the radiomics Rad-score and clinical factors were established. The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results Of 1561 radiomics features, 10 strongly correlated with FGR were selected. The radiomics model using logistic regression performed best compared eight algorithms. 5 important clinical features identified by analysis. The united model demonstrated a good predictive performance in the training, internal testing and external testing sets, with AUC 0.941 (95% CI, 0.0.904–0.977), 0.899 (95% CI, 0.789–1) and 0.861 (95% CI 0.725–0.998), prediction accuracies 0.885, 0.844 and 0.805, precisions 0.871, 0.789 and 0.867, recalls 0.836, 0.833 and 0.684, and F1 scores 0.853, 0.811 and 0.765, respectively. The calibration and decision curves of the united model also showed good performance. Nomogram confirmed clinical applicability of the model. Conclusions The proposed placental radiomics-clinical machine learning model is simple yet effective to predict FGR.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3