Correlating real-world incidents with vessel traffic off the coast of Hawaii, 2017-2020

Author:

Henriksen Amelia1

Affiliation:

1. Sandia National Laboratories

Abstract

Abstract Objectives: Because of the high-risk nature of emergencies and illegal activities at sea, it is critical that algorithms designed to detect anomalies from maritime traffic data be robust. However, there exist no publicly available maritime traffic data sets with real-world labeled anomalies. As a result, most anomaly detection algorithms for maritime traffic are validated without ground truth. Data description: We introduce the HawaiiCoast_GT data set, the first ever publicly available automatic identification system (AIS) data set with a large corresponding set of true anomalous incidents. This data set—cleaned and curated from raw Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA) automatic identification system (AIS) data—covers Hawaii’s coastal waters for four years (2017-2020) and contains 88,749,176 AIS points for a total of 2,622 unique vessels. This includes 208 labeled tracks corresponding to 154 rigorously documented real-world incidents.

Publisher

Research Square Platform LLC

Reference27 articles.

1. Maritime Anomaly Detection for Vessel Traffic Services: A Survey;Stach T;Journal of Marine Science and Engineering,2023

2. Machine learning approaches to maritime anomaly detection. Naše more: znanstveni časopis za more i pomorstvo;Obradović I,2014

3. Maritime anomaly detection: A review;Riveiro M;WIREs Data Mining Knowl Discov,2018

4. Anomaly Detection in Maritime AIS Tracks: A Review of Recent Approaches;Wolsing K;Journal of Marine Science and Engineering,2021

5. Anneken M, Fischer Y, Beyerer J. Evaluation and comparison of anomaly detection algorithms in annotated datasets from the maritime domain. 2015 SAI Intelligent Systems Conference. 2015; https://doi.org/10.1109/IntelliSys.2015.7361141

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3