Diet induced insulin resistance is due to induction of PTEN expression
Author:
Affiliation:
1. Memorial Sloan Kettering Cancer Center
2. Weill Cornell Medicine
3. MSKCC
4. Northeastern University
Abstract
Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.
Publisher
Research Square Platform LLC
Reference58 articles.
1. Type 2 Diabetes Mellitus: A Pathophysiologic Perspective;Westman EC;Front Nutr,2021
2. Insulin Resistance: From Mechanisms to Therapeutic Strategies;Lee SH;Diabetes Metab J,2022
3. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents;Pino A;Endocr Rev,2019
4. Lessons from mouse models of high-fat diet-induced NAFLD;Nakamura A;Int J Mol Sci,2013
5. Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications;Wondmkun YT;Diabetes Metab Syndr Obes,2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3