NOx emission reduction in low viscous low cetane (LVLC) fuel using additives in CI engine – An experimental study

Author:

Sonthalia Ankit1,Varuvel Edwin Geo2,Subramanian Thiyagarajan3,Kumar Naveen1

Affiliation:

1. SRM Institute of Science and Technology, Delhi – NCR Campus

2. Istinye University

3. Saveetha School of Engineering, SIMATS, Saveetha University

Abstract

Abstract

This study examines the combustion properties of pine oil (PO), which is classified as a low viscosity, low cetane (LVLC) fuel. It highlights the superior performance of pine oil in comparison to diesel fuel, but acknowledges that its low cetane index causes a delay in combustion initiation, which consequently results in elevated NOx emissions. Fuel atomization, evaporation, and air/fuel mixing is enhanced by the reduced viscosity and boiling point of PO in comparison to diesel. Nevertheless, the low cetane index of PO restricts its applicability as a diesel fuel substitute in CI engines. Because of the significant heat release that occurs subsequent to an extended ignition delay, NOx emissions tend to rise with less viscous and low cetane (LVLC) fuels. A range of cetane improvers, such as diethyl ether (DEE), benzyl alcohol (Bn), diglyme (DGE), and methyl tert-butyl ether (MTBE), have demonstrated effectiveness in mitigating nitrogen oxide (NOx) emissions upon introduction into pine oil. All the cetane improvers were added 5 % and 10 % by volume with pine oil. A twin-cylinder tractor engine operating at a constant speed of 1500 revolutions per minute was utilized in this testing. In order to achieve a warm-up condition that would enable the smooth operation of PO, the engine was initially operated on diesel fuel. At maximum load condition, NOx emission of PO was higher by 8% in comparison to diesel. NOx emission was significantly reduced with addition of cetane improvers. Maximum reduction of 7% was observed with PO + MTBE 10% in comparison to PO which is in par with diesel. An increase in HC and CO emission was observed with all cetane improver addition with PO.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3