Optimization of Energy Consumption Model of Laser Cladding Technology for Green Additive Manufacturing

Author:

MIAH MD HELAL1ORCID,Chand Dharmahinder Singh,Malhi Gurmail Singh

Affiliation:

1. Chandigarh University

Abstract

Abstract Regarding the complexity of energy consumption (EC) mechanisms and unpredictable EC in the additive manufacturing (AM) process, this research illustrates the laser cladding system's EC modelling and analysis method. Initially, according to the laser cladding system's working principle and EC characteristics, it is divided into five subsystems. Then, the energy consumption model (ECM) of each subsystem and the ECM of the whole laser cladding system are obtained through theoretical and experimental analysis. Finally, the ECM and specific EC were analysed in the cladding experiment. In this research cladding matrix and cladding material are both 316L Stainless steel. The results showed that the errors between the prediction results of EC and specific EC and the experimental measurement results were 1.37% and 2.17%, respectively, which indicate the accuracy and effectiveness of the model. The model has practical value in predicting the laser cladding system's EC, improving the process route, and achieving green development. The proposed method can also provide a reference for the EC research of other AM technologies.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3