Staying on the current niche: Consensus model reveals the habitat loss of a critically endangered dragonfly Libellula angelina under climate changes

Author:

Liu Tong1,Liu Haoyu1,Li Yuntao1,Yang Yuxia1

Affiliation:

1. Hebei University

Abstract

Abstract Climate change is expected to exert a large impact on the spatial distribution of insects, yet limited analyses are available for assessing the influences of climate change on the distribution of Libellula angelina (Odonata: Libellulidae), which hindered the development of conservation strategies for this critically threatened dragonfly species. Here, a consensus model (BIOCLIM, GAM, MaxEnt and Random Forest) and niche analysis approach were applied to predict the dynamic change of potential distribution areas and ecological niche for L. angelina under future climate change. Meanwhile, the important environmental variables affecting the potential distribution of L. angelina were identified. The results demonstrated that the potential distribution pattern and ecological niche of L. angelina will not shift significantly in face of future climate change, but its highly suitable area in southern Beijing (China), the western and southern South Korea, and the southern Honshu Island (Japan) will decrease constantly. Further analyses indicated that the human influence index (32.3% of variation) is the second highest factor in predicting the potential distribution of L. angelina, following the precipitation of warmest quarter (42.6% of variation). Based on the obtained results, we suggest that extensive cooperation among the countries (China, South Korea and Japan) be advocated to formulate the international conservation strategies, especially more attention and conservation efforts should be paid in those high-suitability areas of L. angelina to gain better protection efficiency, and proper artificial ecological restoration measures should also be exerted. Implication for insect conservation: Our results show that although the critically endangered dragonfly L. angelina will still stay the current niche under climate change, its suitable area (especially highly suitable area) will decrease significantly. Therefore, we suggest that more attention and conservation efforts should be implemented in those high-suitability areas to reduce the extinction risk of L. angelina.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3