1. 1. Angelucci F, Spalletta G, di Iulio F, Ciaramella A, Salani F, Colantoni L, Varsi AE, Gianni W, Sancesario G, Caltagirone C, Bossù P. Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res. 2010 Feb;7(1):15–20. doi: 10.2174/156720510790274473. PMID: 20205668.
2. 2. Cummings, JL., Morstorf, T., Zhong, K.: Alzheimer’s disease drug development pipeline: few candidates, frequent failures. Alzheimer’s Res Ther (2014)
3. 3. A. A. Willette, V. D. Calhoun, J. M. Egan, D. Kapogiannis, and A. s. D. N. Initiative, "Prognostic classification of mild cognitive impairment and Alzheimer s disease: MRI independent component analysis," Psychiatry Research: Neuroimaging, vol. 224, no. 2, pp. 81–88, 2014.
4. 4. H. Gorji and J. Haddadnia, "A novel method for early diagnosis of Alzheimer's disease based on pseudo Zernike moment from structural MRI," Neuroscience, vol. 305, pp. 361–371, 2015.
5. 5. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012 Oct 1;2(10):a006296. doi: 10.1101/cshperspect.a006296. PMID: 23028126; PMCID: PMC3475404. Shen L, Jia J. An Overview of Genome-Wide Association Studies in Alzheimer's Disease. Neurosci Bull. 2016;32(2):183–190. doi:10.1007/s12264-016-0011-3 “Genetics.” Alzheimer's Disease and Dementia, www.alz.org/alzheimers-dementia/what-is-alzheimers/causes-and-risk-factors/genetics. Marian AJ. Molecular genetic studies of complex phenotypes. Transl Res. 2012;159:64–79. doi: 10.1016/j.trsl.2011.08.001. Lee T, Lee H. Prediction of Alzheimer's disease using blood gene expression data. Sci Rep. 2020 Feb 26;10(1):3485. doi: 10.1038/s41598-020-60595-1. PMID: 32103140; PMCID: PMC7044318. Patel H, Dobson RJB, Newhouse SJ. A Meta-Analysis of Alzheimer's Disease Brain Transcriptomic Data. J Alzheimers Dis. 2019;68(4):1635–1656. doi: 10.3233/JAD-181085. PMID: 30909231; PMCID: PMC6484273. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med. 2006;147:126–32. Saykin AJ, Shen L, Foroud TM, et al. Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement. 2010;6(3):265–273. doi:10.1016/j.jalz.2010.03.013 P. Fehlbaum-Beurdeley et al., "Toward an Alzheimer's disease diagnosis via high-resolution blood gene expression," Alzheimer's & Dementia, vol. 6, no. 1, pp. 25–38, 2010. K. Lunnon et al., "A blood gene expression marker of early Alzheimer's disease," Journal Of Alzheimer's Disease, vol. 33, no. 3, pp. 737–753, 2013. Li, H. et al. Identification of molecular alterations in leukocytes from gene expression profiles of peripheral whole blood of Alzheimer’s disease. Sci. Rep. 7, 14027 (2017). Li, X. et al. Systematic analysis and biomarker study for Alzheimer’s disease. Sci. Rep. 8, 17394 (2018). C. Park, J. Ha and S. Park, "Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset", Expert Syst. Appl., vol. 140, pp. 112873, 2020. Kalkan H, Akkaya UM, Inal-Gültekin G, Sanchez-Perez AM. Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression. Genes (Basel). 2022 Aug 8;13(8):1406. doi: 10.3390/genes13081406. PMID: 36011317; PMCID: PMC9407775. Shen, Liran and Qingbo Yin. “The classification for High-dimension low-sample size data.” Pattern Recognit. 130 (2020): 108828. Sarma, M., Chatterjee, S. (2020). Identification and Prediction of Alzheimer Based on Biomarkers Using ‘Machine Learning’. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1241. Springer, Singapore. https://doi.org/10.1007/978-981-15-6318-8_23 Catchpoole DR, Kennedy P, Skillicorn DB, Simoff S (2010) The curse of dimensionality: a blessing to personalized medicine. J Clin Oncol 28: 723–724. Marcilio, Wilson Estecio and Danilo Medeiros Eler. “From explanations to feature selection: assessing SHAP values as feature selection mechanism.” 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) (2020): 340–347. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from Imbalanced Data Sets; Springer International Publishing: Cham, Switzerland, 2018; pp. 197–226. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5, 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0 Ahmed, S.F., Alam, M.S.B., Hassan, M. et al. Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artif Intell Rev 56, 13521–13617 (2023). https://doi.org/10.1007/s10462-023-10466-8 Brownlee, J. Imbalanced Classification with Python. (2020) Chawla, N. V. et al. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953 Han, H., Wang, WY., Mao, BH. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_91