Mechatronic Design of A Composite Vibration Isolation System

Author:

Ghoneam Sobhy1,Hamada Ahmed1,Elkholy Ahmed M.1

Affiliation:

1. Menoufia University

Abstract

Abstract Composite materials have attracted researchers in vibration and noise control applications due to their significant dynamic characteristics such as high strength and high damping level. In this paper, a Glass Fiber Reinforced Composite material (GFRC) is presented as a vibration isolation system to control vibration levels in industry. A prototype of an industrial cam–follower machine is motorized, and the Frequency Response Function (FRF) is recorded using a B&K data acquisition analyzer at five rotational speeds. The transmitted vibrations to the machine foundation are estimated without any isolation system. Then, two optimized GFRC plates of optimum stacking sequences are used as an isolation system to reduce the transmitted vibration. The displacement transmissibility is calculated theoretically and experimentally. Furthermore, the isolation system is integrated with a mechatronic system for improving the isolation performance and enhancing the machining process. The results show that the use of GFRC plates as an isolator reduces the vibration level of the system by 98.46% and 98.5% for [90/90/90/0/0]s and [90/±45/±35/90/±35]s GFRC configurations respectively. Finally, this study proposes a novel strategy for isolation and vibration control technique by employing GFRC plates. The proposed mechatronics control system can be utilized for enhancing system performance and increasing the control of vibration levels.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3