A Multi-angle Bidirectional Interaction Model for Entity Linking

Author:

Ji Lin1,Hui Bei2,Nian Yuhui2,Zhou Wei3,Qiu Jiajun1

Affiliation:

1. Sichuan University

2. University of Electronic Science and Technology of China

3. Swinburne University of Technology

Abstract

Abstract The process of connecting references in a text to appropriate entities in a knowledge graph is known as entity linking. The existing entity linking model learns local compatibility through content and global interdependencies through relevant knowledge graph for disambiguation. However, the local compatibility component of existing methods usually ignores the multi-angle interactions between mentions and candidate entities. In order to fully account for the bidirectional connection between the input document and the knowledge graph, we propose the Bidirectional Interaction Entity Linking (BI-INTEL). The correlation between mentions and candidate entities, as well as the applicability of mention context and candidate entity descriptions, are all taken into account in the local compatibility component. In the global interdependence component, our stacked random walk layers learn the global interdependence of the candidate entity to enhance the accuracy of entity linking. According to the experiments, our BI-INTEL performs 3% better on average than cutting-edge methods.

Publisher

Research Square Platform LLC

Reference57 articles.

1. Bunescu, R., & Pasca, M. (2006). Using encyclopedic knowledge for named entity disambiguation.

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008, June). Freebase: a collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data (pp. 1247–1250).

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In The semantic web (pp. 722–735). Springer, Berlin, Heidelberg.

4. A semantic approach for entity linking by diverse knowledge integration incorporating role-based chunking;Deepak G;Procedia Computer Science,2020

5. Zhang, W., Hua, W., & Stratos, K. (2021, September). EntQA: Entity Linking as Question Answering. In International Conference on Learning Representations.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3