3D Measurements of a Two-phase Flow inside an Optical Cylinder Based on Full-Field Cross-Interface Computed Tomography

Author:

Ling Chen1,Chen Haiyan1,Gao Yu1,Wu Yue1

Affiliation:

1. Beijing Institute of Technology

Abstract

Abstract Three-dimensional (3D) tomographic reconstruction in confined-space requires a mapping relationship which considers the refraction distortion caused by optical walls. In this work, a tomography method, namely full-field cross-interface computed tomography (FCICT), is proposed to solve confine-space problems. The FCICT method utilizes Snell’s law and reverse ray-tracing to analytically correct imaging distortion and establishes the mapping relationship from 3D measurement domain to 2D images. Numerical phantom study is first employed to validate the FCICT method. Afterwards, the FCICT is applied on the experimental reconstruction of an illuminated two-phase jet flow which is initially generated inside an optical cylinder and then gradually moves outside. The comparison between accurately reconstructed vapor by FCICT and coarse result by traditional open space tomography algorithm provides a practical validation of FCICT. Based on the 3D vapor reconstructions at different time sequences, the distributions of surface velocity and 3D curvatures are calculated, and their correspondences are systematically analyzed. It is found that the velocity of a surface point is positively correlated with the mean curvature at the same point, which indicates the concavity/convexity of vapor surface is possibly in accordance with the surface velocity. Moreover, the surface velocity presents monotonical increasing trend with larger Gaussian curvature for elliptic surface points only, due to the dominated Brownian motion as the vapor develops.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3