Genome-wide identification, gene cloning, subcellular location and expression analysis of the OPR gene family under salt stress in sweetpotato

Author:

Li Wenxing1,Li Yongping1,Xu Yuan1,Kumar Sunjeet1,Liu Yi1,Zhu Guopeng1

Affiliation:

1. Hainan University

Abstract

Abstract Background The 12-oxo-phytodienoic acid reductase (OPR) enzyme is crucial for the synthesis of jasmonates (JAs) and is involved in the plant stress response. However, the OPR gene family in sweetpotato, an important horticultural crop, remains unidentified. Results In this study, we employed bioinformatics techniques to identify nine IbOPR genes. Phylogenetic analysis revealed that these genes could be divided into Group I and Group II. Synteny analysis indicated that IbOPR evolution was driven by tandem duplication, whole-genome duplication (WGD), and segmental duplication events. The promoter sequences of IbOPRs were found to be associated with stress and hormonal responses. Additionally, we successfully cloned four IbOPRs from "Haida HD7791" and "Haida HD7798" using homologous cloning technology. These sequences were 1203 bp, 1200 bp, 1134 bp, and 1137 bp in length and encoded 400, 399, 377, and 378 amino acids, respectively. The protein sequence similarity between the salt-tolerant variety "Haida HD7791" and the salt-sensitive variety "Haida HD7798" was determined to be 96.75% for IbOPR2, 99.75% for IbOPR3, 92.06% for IbOPR6, and 98.68% for IbOPR7. Phylogenetic analysis categorized IbOPR2 and IbOPR3 proteins into Group II, while IbOPR6 and IbOPR7 proteins belonged to Group I. Subcellular localization experiments showed IbOPR2 present in the peroxisome, while IbOPR3, IbOPR6, and IbOPR7 proteins were found in the cytoplasm and nucleus. Salt stress induction experiments demonstrated that IbOPR2, IbOPR3, and IbOPR7 were significantly upregulated only in 'Haida HD7791' after 6 hours. In contrast, IbOPR6 was induced in 'Haida HD7798' at 6 hours but inhibited in 'Haida HD7791' at later time points (12, 24, 48, and 72 hours), highlighting functional differences in salt stress responses. Conclusions Our findings suggest that IbOPR2 may play a crucial role in sweetpotato's response to salt stress by participating in JAs synthesis. These results provide a foundation for future functional analyses of OPR genes in sweetpotato.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3