Rainfall Projections for the Brazilian Legal Amazon using Recurrent Neural Networks

Author:

Monteiro Luiz Augusto Ferreira1,Oliveira-Júnior José Francisco2,Nunes Dorisvalder Dias1,Mendes David3,Gois Givanildo4,Sanches Fabio Oliveira5,Wollmann Cassio Arthur6,Watanabe Michel1,Gobo João Paulo Assis1

Affiliation:

1. Federal University of Rondônia (UNIR)

2. Federal University of Alagoas (UFAL)

3. Federal University of Rio Grande do Norte (UFRN)

4. Federal University of Acre (UFAC)

5. Federal University of Juiz de Fora – UFJF – Minas Gerais

6. Federal University of Santa Maria – UFSM – Rio Grande do Sul

Abstract

Abstract

Rainfall in the Brazilian Legal Amazon (BLA) is vital for climate and water resource management. This research uses spatial downscaling and validated rainfall data from the National Water and Sanitation Agency (ANA) to ensure accurate rain projections with artificial intelligence. Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) were employed to forecast rainfall from 2012 to 2020. The RNN model showed strong alignment with observed patterns, accurately predicting rainfall seasonality. However, median comparisons revealed fair approximations with discrepancies. The Root Mean Square Error (RMSE) ranged from 6.7mm to 11.2mm, and the coefficient of determination (R²) was low in some series. Extensive analyses showed low Wilmott agreement and high Mean Absolute Percentage Error (MAPE), highlighting limitations in projecting anomalies and days without rain. Despite challenges, the study lays a foundation for future advancements in climate modeling and water resource management in the BLA.

Publisher

Springer Science and Business Media LLC

Reference88 articles.

1. AB’SABER AN (2019) Os domínios de natureza no Brasil: potencialidades paisagísticas. São Paulo: Ateliê Editorial, 2012. ________. SNUC-Sistema Nacional de Unidades de conservação: texto da Lei, v. 9, p. 28

2. Comparison and validation of TRMM satellite precipitation estimates and data observed in Mato Grosso do Sul state, Brazil;Revista Brasileira De Climatologia v,2020

3. Avaliação das estimativas de precipitação do produto 3B43-TRMM do estado do Amazonas;Catherine Torres de ALMEIDA;Floresta e Ambiente v,2015

4. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013;ALMEIDA CT;Int J Climatology v,2017

5. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6;Clayton Alcarde ALVARES,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3