Ex Vivo Machine Perfusion as a Platform for Lentiviral Gene Delivery in Rat Livers
Author:
Affiliation:
1. Massachusetts General Hospital, Harvard Medical School
2. University Medical Center Utrecht
3. Massachusetts General Hospital
4. Rutgers University
Abstract
Developing new strategies for local monitoring and delivery of immunosuppression is critical to making allografts safer and more accessible. Ex vivo genetic modification of grafts using machine perfusion presents a promising approach to improve graft function and modulate immune responses while minimizing risks of off-target effects and systemic immunogenicity in vivo. This proof-of-concept study demonstrates the feasibility of using normothermic machine perfusion (NMP) to mimic in vitro conditions for effective gene delivery. In this study, lentiviral vectors carrying biosensor constructs with Gaussia Luciferase (GLuc) were introduced to rodent livers during a 72-hour perfusion period, with a targeted delivery of 3 x 107 infection units (IU). Following the initial 24-hour exposure required for viral transduction, an additional 48 hours was necessary to observe gene expression, analogous to in vitro benchmarks. The perfused livers displayed significantly increased luminescence compared to controls, illustrating successful genetic modification. These findings validate the ex vivo use of lentiviral particles in a rodent liver model and lay the groundwork for a broad range of applications through genetic manipulation of organ systems. Future studies will focus on refining this technology to enhance precision in gene expression and explore its implications for clinical transplantation.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease;Dimitrievska M;Blood Rev,2024
2. Targeted nonviral delivery of genome editors in vivo;Tsuchida CA;Proc Natl Acad Sci U S A,2024
3. In vivo human T cell engineering with enveloped delivery vehicles;Hamilton JR;Nat Biotechnol,2024
4. Immunogenicity and toxicity of AAV gene therapy;Ertl HCJ;Front Immunol,2022
5. Liver transplantation: Current status and challenges;Jadlowiec CC;World J Gastroenterol,2016
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3