Application of Data Mining Technology in Risk Prediction of Metabolic Syndrome in Oil Workers

Author:

Wang Jie1,Li Chao1,Li Jing1,Qin Sheng1,Liu Chunlei1,Wang Jiaojiao1,Chen Zhe1,Wu Jianhui1,Wang Guoli1

Affiliation:

1. North China University of Science and Technology

Abstract

Abstract Background. The prevalence of metabolic syndrome continues to rise sharply worldwide, seriously threatening people's health.In this paper, three kinds of risk prediction models applicable to the metabolic syndrome of oil workers were established, and the optimal models were found through comparison. The optimal model can be used to identify people at high risk of metabolic syndrome as early as possible, to predict their risk, and to persuade them to change their adverse lifestyle so as to slow down and reduce the incidence of metabolic syndrome.Methods. A total of 1,468 workers from an oil company who participated in occupational health physical examination from April 2017 to October 2018 were included in this study. We established the Logistic regression model, the random forest model and the convolutional neural network model, and compared the prediction performance of the models according to the F1 score, sensitivity, accuracy and other indicators of the three models.Results. The results showed that the accuracy of the three models in the training set was 83.45%, 94.21% and 86.34%, the sensitivity was 78.47%, 94.62% and 81.30%, the F1 score was 0.79, 0.93 and 0.83, and the area under the ROC curve was 0.894, 0.987 and 0.935, respectively. In the test set, the accuracy was 76.72%, 80.66% and 78.69%, the sensitivity was 70.00%, 77.50% and 68.33%, the F1 score was 0.70, 0.76 and 0.71, and the area under the ROC curve was 0.797, 0.861 and 0.855, respectively.Conclusions. The study showed that the prediction performance of random forest model is better than other models, and the model has higher application value, which can better predict the risk of metabolic syndrome in oil workers, and provide corresponding theoretical basis for the health management of oil workers.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Application of Data Mining Technology in Physical Training;Application of Big Data, Blockchain, and Internet of Things for Education Informatization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3