Development of water re-allocation policy under uncertainty conditions in the inflow to reservoir and demands parameters: A case study of Karaj AmirKabir dam

Author:

tabari mahmoud mohammad rezapour1ORCID,Safari Reihaneh2

Affiliation:

1. University of Mazandaran

2. Shahrekord University

Abstract

Abstract The process of optimal operation of multipurpose reservoirs is accompanied by large dimensions of decision variables and the uncertainty of hydrological parameters and water demands. Therefore, in determining the optimal operation policies (OOPs), the decision making for water allocation is faced with problems and complexities. One of the effective approaches for sustainable management and optimal allocation from water resources is the multi-objective structural development based on the uncertainty of input parameters. The purpose of this study is to provide OOPs from Karaj AmirKabir multi-purpose reservoir with applying uncertainty in the inflow to reservoir and downstream water demand. The proposed approach has been investigated in two certain and uncertain models, and three objective functions of the system including maximizing hydropower generation, water supply demands, and flood control have been considered to formulate OOPs. Non-dominated sorting genetic algorithm-II (NSGA-II) was performed to optimize the three proposed objective functions and by applying multi-criteria decision making (MCDM) methods, the best operation scenario was selected. In the uncertainty model, using the interval method and repeated implementation of the deterministic model for completely random scenarios that generated based on the variation interval of the uncertain parameters, the non-deterministic optimal allocation values were produced. Based on these optimal allocation values and the fitting of the standard probability distribution on it, the probability of occurrence of the deterministic allocation values was determined. Production of optimal probabilistic allocation policies can be very useful and efficient in providing real vision to managers to select appropriate policies in different conditions and rare hydrological events. The results obtained from the certain model shows that as a result of optimal allocation to demands, the fuzzy reliability, resiliency, and system stability indexes were improved to 67.81, 21.99, and 24.98 percentage, respectively. Also, in an uncertain model, applying changes of 48% and 22%, respectively for the inflow and downstream demand has led to changes of 23%, 55%, and 18%, respectively, in the first, second, and third objective functions. The highest impact from uncertain conditions, has been related to the water supply demands with 55% of the range of variations So, the water supply demands, has a higher sensitivity and priority than other reservoir objective functions under uncertain conditions. Another important result extracted from this study is to determine the monthly probability of optimal allocations achievement. Accordingly, in the warm seasons and years in which the reservoir is facing drought, the occurrence probability of the optimal allocations decreases. Given the comprehensiveness of the proposed methodology, this approach is a very suitable tool for determining the optimal water allocations as probabilistic based on the scenarios desired by managers and reservoir operators.

Publisher

Research Square Platform LLC

Reference68 articles.

1. Robust Methods for Identifying Optimal Reservoir Operation Strategies Using Deterministic and Stochastic Formulations;Ahmadi A;Water Resour Manage,2010

2. Model for determining real-time optimal dam releases during flooding conditions;Ahmed E-SMS;Nat Hazards,2012

3. Reservoir operation using a robust evolutionary optimization algorithm;Al-Jawad JY;J Environ Manage,2017

4. Determination of irrigation allocation policy under climate change by genetic programming;Ashofteh PS,2015

5. Development of a Fuzzy Multi-Objective Heuristic Model for Optimum Water Allocation;Banihabib ME;Water Resour Manage,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3