Butyl benzyl phthalate as a key component of phthalate ester in relation to cognitive impairment in NHANES elderly individuals and experimental mice

Author:

Yu Yongquan1,Wang Yucheng1,Dong Yu1,Shu Shuge1,Zhang Di2,Xu Jiayi2,Zhang Ying1,Shi Wei1,Wang Shou-Lin2

Affiliation:

1. Southeast University School of Public Health

2. Nanjing Medical University School of Public Health

Abstract

Abstract Phthalates are a group of neurotoxicants with cognitive-disrupting potentials. Given the structural diversity of phthalates, the corresponding neurotoxicity is dramatically altered. To identify the potential contributions of different phthalates on the process of cognitive impairment, data of 836 elders from the NHANES 2011–2014 cycles were used. Survey-weighted logistic regression and principal component analysis-weighted quantile sum regression (PCA-WQSR) models were applied to estimate the independent and combined associations of 11 urinary phthalate metabolites with cognitive deficit [assessed by 4 tests: Immediate Recall (IR), Delayed Recall (DR), Animal Fluency (AF), and Digit Symbol Substitution test (DSST] and to identify the potential phthalate with high weight. Laboratory mice were further used to examine the effect of phthalates on cognitive function and to explore the potential mechanisms. In logistic regression models, MBzP was the only metabolite positively correlated with four tests, with ORs of 2.53 [quartile 3 (Q3)], 2.26 (Q3), 2.89 (Q4) and 2.45 (Q2), 2.82 (Q4) for IR, DR, AF and DSST respectively. In PCA-WQSR co-exposure models, low-molecular-weight (LMW) phthalates were the only PC positively linked to DSST deficit (OR: 1.93), which was further validated in WQSR analysis (WQS OR7 − phthalates: 1.56 and WQS OR8 − phthalates: 1.55); consistent with the results of logistic regression, MBzP was the dominant phthalate. In mice, butyl benzyl phthalate (BBP), the parent phthalate of MBzP, dose-dependently reduced cognitive function and disrupted hippocampal neurons. Additionally, the hippocampal transcriptome analysis identified 431 differential expression genes, among which most were involved in inhibiting the neuroactive ligand‒receptor interaction pathway and activating the cytokine‒cytokine receptor interaction pathway. Our study indicates the critical role of BBP in the association of phthalates and cognitive deficits among elderly individuals, which might be speculated that BBP could disrupt hippocampal neurons, activate neuroinflammation and inhibit neuroactive receptors. Our findings provide new insight into the cognitive-disrupting potential of BBP.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3