Per-Covid-19: A Benchmark Database For Covid-19 Percentage Prediction From CT-scans

Author:

Bougourzi Fares1,Distante Cosimo1,Abdelkrim Ouafi2,Dornaika Fadi3,Hadid Abdenour4,Taleb-Ahmed Abdelmalik4

Affiliation:

1. National Research Council of Italy

2. University of Biskra

3. IKERBASQUE, Basque Foundation for Science

4. Univ. Polytechnique Hauts-de-France, Univ. Lille, CNRS, Centrale Lille, UMR 8520 - IEMN

Abstract

Abstract Covid-19 infection recognition is very important step in the fighting against the new pandemic Covid-19. In fact, many methods have been used to recognize the Covid-19 infection including Reverse transcription polymerase chain reaction (RT-PCR), X-ray scan and CT-scan. In addition to the recognition of the Covid-19 infection, CT-scans can provide more important information about the evolution of this disease and its severity. With the extensive number of Covid-19 infections, estimating the Covid-19 percentage can help the intensive care to free up the resuscitation beds for the critical cases and follow other protocol for less severity cases. In this paper, we propose Covid-19 percentage estimation database. Moreover, we evaluate the performance of three Covolutional Neural Network (CNN) architectures which are ResneXt-50, Densenet-161 and Inception-v3. For the three CNN architectures, we use two loss functions which are MSE and Dynamic Huber. In addition, two pretrained scenarios are investigated (ImageNet pretrained models and X-ray pretrained models). The evaluated approaches achieved promising results, where Inception-v3 with using Dynamic Huber loss function and X-ray pretrained model achieved the best performance.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3